Jordan Normal Form
نویسنده
چکیده
This paper outlines a proof of the Jordan Normal Form Theorem. First we show that a complex, finite dimensional vector space can be decomposed into a direct sum of invariant subspaces. Then, using induction, we show the Jordan Normal Form is represented by several cyclic, nilpotent matrices each plus an eigenvalue times the identity matrix – these are the Jordan
منابع مشابه
The James and von Neumann-Jordan type constants and uniform normal structure in Banach spaces
Recently, Takahashi has introduced the James and von Neumann-Jordan type constants. In this paper, we present some sufficient conditions for uniform normal structure and therefore the fixed point property of a Banach space in terms of the James and von Neumann-Jordan type constants and the Ptolemy constant. Our main results of the paper significantly generalize and improve many known results in...
متن کاملInfinite-dimensional versions of the primary, cyclic and Jordan decompositions
The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.
متن کاملJordan Normal and Rational Normal Form Algorithms
X iv :c s/ 04 12 00 5v 1 [ cs .S C ] 2 D ec 2 00 4 Jordan Normal and Rational Normal Form Algorithms Bernard Parisse, Morgane Vaughan Institut Fourier CNRS-UMR 5582 100 rue des Maths Université de Grenoble I 38402 St Martin d'Hères Cédex Résumé In this paper, we present a determinist Jordan normal form algorithms based on the Fadeev formula : (λ · I − A) ·B(λ) = P (λ) · I where B(λ) is (λ · I −...
متن کاملIs Every Invertible Linear Map in the Structure Group of some Algebraic Curvature Tensor?
We study the elements in the structure group of an algebraic curvature tensor R by analyzing Jordan normal forms. Because every matrix has a unique Jordan normal form representation, up to a permutation of the Jordan Blocks, we are able to determine which matrices taking on a specific form will be in the structure group of some algebraic curvature tensor. A method for analyzing these forms is d...
متن کاملThe Jordan normal base in lattices and nilpotent endomorphisms of finitely generated semisimple modules
We formulate a lattice theoretical Jordan normal form theorem for certain nilpotent lattice maps satisfying the so called JNB conditions. As an application of the general results, we obtain a transparent Jordan normal base of a nilpotent endomorphism in a finitely generated semisimple module.
متن کامل